How to solve Cholesky decomposition error in Tensorflow caused by low precision datatype tf.float32?

Here’s a clean and structured format explaining how to solve the Cholesky decomposition error in TensorFlow due to tf.float32 precision issues:

Problem

Error:

InvalidArgumentError: Cholesky decomposition was not successful

 

Why?
Cholesky decomposition requires a symmetric, positive-definite matrix. Using tf.float32 can cause numerical instability, making the matrix not positive-definite due to rounding errors.

 

Solution Summary

 

Step

Fix

Code Example

Description

1

Use higher precision (tf.float64)

matrix = tf.cast(matrix, tf.float64)

Reduces numerical errors and improves stability.

2

Add jitter (small diagonal value)

matrix += tf.eye(n) * 1e-6

Helps ensure the matrix is numerically positive definite.

3

Ensure symmetry

matrix = (matrix + tf.transpose(matrix)) / 2

Eliminates minor asymmetry that might break decomposition.

4

Fallback: Use eigh or svd

tf.linalg.eigh(matrix)

Use spectral methods to analyse or fix the matrix.