When to use tf.resource and tf.variant?

Summary Table: tf.resource vs tf.variant

Feature

tf.resource

tf.variant

Purpose

Handles stateful objects (e.g., variables, tables)

Handles composite or custom types (e.g., ragged tensors, datasets, queues)

Used for

tf.Variable, lookup tables, queues, etc.

Ragged tensors, tf.data.Dataset, distribution values, nested tensors

Stateful?

Yes (tracks mutable state)

Typically stateless or custom serialized

Custom Ops?

Rarely needed

Often used when defining custom ops

User-level use?

Almost never directly

Occasionally when building advanced models/layers

Serialization

Doesn’t serialize to tensors

Can encapsulate structured data in a tensor-like wrapper

 

When to Use tf.resource

  • You don’t need to use it directly.

  • It’s internally used for:

  • tf.Variable

  • Hash tables (e.g., tf.lookup.StaticHashTable)

  • Queue ops

  • TensorFlow tracks their state and handles them with reference semantics.

Example (handled automatically):

var = tf.Variable(5.0)

print(var.dtype)  # tf.float32 (not tf.resource — it’s internal)

 

When to Use tf.variant

Use tf.variant when:

  • You want to pass complex data structures (like nested lists, ragged arrays) through a graph.

  • You’re implementing custom operations that need to return or consume non-primitive data types.

Example: RaggedTensor (internally uses tf.variant)

rt = tf.ragged.constant([[1, 2], [3]])

print(rt.dtype)  # tf.int32

print(rt.flat_values.dtype)  # tf.int32

# Internally wrapped in tf.variant

 

Example: tf.data pipeline (internally uses tf.variant)

dataset = tf.data.Dataset.range(5)

for x in dataset:

    print(x.numpy())  # Output: 0 1 2 3 4

 

Advanced Usage

You may work directly with tf.variant:

  • When writing custom C++ ops

  • When working with serialized tensors, like from custom TensorFlow plugins or advanced data types